Data Report — Chronic Kidney Disease

Source: UCI dataset 336

Dataset metadata

Description

Clinical records for early detection of CKD (subset of variables mapped).

Variables and summary

variable description inferred declared dist
age continuous Integer 49.5633 ± 15.5122 [6, 39.25, 50.5, 60, 83]
bp blood pressure continuous Integer 74.0506 ± 11.1754 [50, 60, 80, 80, 110]
sg specific gravity continuous Categorical 1.0199 ± 0.0055 [1.005, 1.02, 1.02, 1.025, 1.025]
al albumin continuous Categorical 0.7975 ± 1.4131 [0, 0, 0, 1, 4]
su sugar continuous Categorical 0.2532 ± 0.8134 [0, 0, 0, 0, 5]
rbc red blood cells discrete Binary 140 (88.61%)
pc pus cell discrete Binary 129 (81.65%)
pcc pus cell clumps discrete Binary 144 (91.14%)
ba bacteria discrete Binary 146 (92.41%)
bgr blood glucose random continuous Integer 131.3418 ± 64.9398 [70, 97, 115.5, 131.75, 490]
bu blood urea continuous Integer 52.5759 ± 47.3954 [10, 26, 39.5, 49.75, 309]
sc serum creatinine continuous Continuous 2.1886 ± 3.0776 [0.4, 0.7, 1.1, 1.6, 15.2]
sod sodium continuous Integer 138.8481 ± 7.4894 [111, 135, 139, 144, 150]
pot potassium continuous Continuous 4.6367 ± 3.4764 [2.5, 3.7, 4.5, 4.9, 47]
hemo hemoglobin continuous Continuous 13.6873 ± 2.8822 [3.1, 12.6, 14.25, 15.775, 17.8]
pcv packed cell volume continuous Integer 41.9177 ± 9.1052 [9, 37.5, 44, 48, 54]
wbcc white blood cell count continuous Integer 8475.9494 ± 3126.8802 [3800, 6525, 7800, 9775, 26400]
rbcc red blood cell count continuous Continuous 4.8918 ± 1.0194 [2.1, 4.5, 4.95, 5.6, 8]
htn hypertension discrete Binary 34 (21.52%)
dm diabetes mellitus discrete Binary 28 (17.72%)
cad coronary artery disease discrete Binary 11 (6.96%)
appet appetite discrete Binary 139 (87.97%)
pe pedal edema discrete Binary 20 (12.66%)
ane anemia discrete Binary 16 (10.13%)
class ckd or not ckd discrete Binary 115 (72.78%)

Fidelity summary

model backend disc_jsd_mean disc_jsd_median cont_ks_mean cont_w1_mean
MetaSyn metasyn 0.0398 0.035 0.301 43.6132
clg_mi2 pybnesian 0.0544 0.0502 0.2405 49.3847
semi_mi5 pybnesian 0.0419 0.0411 0.2446 59.6372
ctgan_fast synthcity 0.1475 0.1492 0.6607 880.088
tvae_quick synthcity 0.1676 0.1862 0.2515 74.6213

Models

UMAPDetailsStructure

Real data

MetaSyn

Model: clg_mi2 (pybnesian)

Model: semi_mi5 (pybnesian)

Model: ctgan_fast (synthcity)

Model: tvae_quick (synthcity)